Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artif Intell Med ; 150: 102837, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553151

RESUMO

The thickness of the choroid is considered to be an important indicator of clinical diagnosis. Therefore, accurate choroid segmentation in retinal OCT images is crucial for monitoring various ophthalmic diseases. However, this is still challenging due to the blurry boundaries and interference from other lesions. To address these issues, we propose a novel prior-guided and knowledge diffusive network (PGKD-Net) to fully utilize retinal structural information to highlight choroidal region features and boost segmentation performance. Specifically, it is composed of two parts: a Prior-mask Guided Network (PG-Net) for coarse segmentation and a Knowledge Diffusive Network (KD-Net) for fine segmentation. In addition, we design two novel feature enhancement modules, Multi-Scale Context Aggregation (MSCA) and Multi-Level Feature Fusion (MLFF). The MSCA module captures the long-distance dependencies between features from different receptive fields and improves the model's ability to learn global context. The MLFF module integrates the cascaded context knowledge learned from PG-Net to benefit fine-level segmentation. Comprehensive experiments are conducted to evaluate the performance of the proposed PGKD-Net. Experimental results show that our proposed method achieves superior segmentation accuracy over other state-of-the-art methods. Our code is made up publicly available at: https://github.com/yzh-hdu/choroid-segmentation.


Assuntos
Corioide , Aprendizagem , Corioide/diagnóstico por imagem , Retina/diagnóstico por imagem , Processamento de Imagem Assistida por Computador
2.
Psychiatr Genet ; 34(2): 54-60, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441120

RESUMO

OBJECTIVE: The molecular mechanism of electroconvulsive therapy (ECT) for schizophrenia remains unclear. The aim of this study was to uncover the underlying biological mechanisms of ECT in the treatment of schizophrenia using a transcriptional dataset. METHODS: The peripheral blood mRNA sequencing data of eight patients (before and after ECT) and eight healthy controls were analyzed by integrated co-expression network analysis and the differentially expressed genes were analyzed by cluster analysis. Gene set overlap analysis was performed using the hypergeometric distribution of phypfunction in R. Associations of these gene sets with psychiatric disorders were explored. Tissue-specific enrichment analysis, gene ontology enrichment analysis, and protein-protein interaction enrichment analysis were used for gene set organization localization and pathway analysis. RESULTS: We found the genes of the green-yellow module were significantly associated with the effect of ECT treatment and the common gene variants of schizophrenia ( P  = 0.0061; family-wise error correction). The genes of the green-yellow module are mainly enriched in brain tissue and mainly involved in the pathways of neurotrophin, mitogen-activated protein kinase and long-term potentiation. CONCLUSION: Genes associated with the efficacy of ECT were predominantly enriched in neurotrophin, mitogen-activated protein kinase and long-term potentiation signaling pathways.


Assuntos
Eletroconvulsoterapia , Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/terapia , RNA-Seq , Fatores de Crescimento Neural , Biologia Computacional , Proteínas Quinases Ativadas por Mitógeno
3.
MycoKeys ; 102: 267-284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463693

RESUMO

Species of Grifola are famous edible mushrooms and are deeply loved by consumers around the world. Most species of this genus have been described and recorded in Oceania, Europe and South America, with only Grifolafrondosa being recorded in Asia. In this study, two novel species of Grifola from southwestern China (Asia) are introduced. Macro and micromorphological characters are described. Grifolaedulissp. nov. present medium-size basidiomata with gray to gray-brown lobes upper surface, mostly tibiiform or narrowly clavate, rarely narrowly lageniform or ellipsoid chlamydospores, cuticle hyphae terminal segments slightly enlarged. Grifolasinensissp. nov. has white to grayish white lobes upper surface, mostly ellipsoid, rarely narrowly utriform chlamydospores, and broadly ellipsoid to ellipsoid basidiospores (4.6-7.9 × 3.0-5.9 µm). The two new species are supported by phylogenetic analyses of combined nuclear rDNA internal transcribed spacer ITS1-5.8S-ITS2 rDNA (ITS) and ß-tubulin (TUBB). Moreover, the genetic distance between TUBB sequences of those specimen from GenBank was 1.76-1.9%. Thus, the conspecificity relationship of our specimens remains uncertain, and further specimens are required to conclusively confirm its identity.

4.
Nano Lett ; 24(7): 2308-2314, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324009

RESUMO

Two-dimensional (2D) nonlayered transition metal dichalcogenide (TMD) materials are emergent platforms for various applications from catalysis to quantum devices. However, their limited availability and nonstraightforward synthesis methods hinder our understanding of these materials. Here, we present a novel technique for synthesizing 2D nonlayered AuCrS2 via Au-assisted chemical vapor deposition (CVD). Our detailed structural analysis reveals the layer-by-layer growth of [AuCrS2] units atop an initial CrS2 monolayer, with Au binding to the adjacent monolayer of CrS2, which is in stark contrast with the well-known metal intercalation mechanism in the synthesis of many other 2D nonlayered materials. Theoretical calculations further back the crucial role of Cr in increasing the mobility of Au species and strengthening the adsorption energy of Au on CrS2, thereby aiding the growth throughout the CVD process. Additionally, the resulting free-standing nanoporous AuCrS2 (NP-AuCrS2) exhibits exceptional electrocatalytic properties for the hydrogen evolution reaction.

5.
Heliyon ; 10(2): e24035, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38268836

RESUMO

The ecological restoration techniques that combine grazing, sand barriers with willows, fertilization, artificial planting, and continuous management are increasingly adopted in the management of flowing sandy land in high-altitude and cold regions. However, few studies have focused on the long-term ecological restoration effects of such technologies. This study systematically compared the vegetation and soil characteristics under different ecological restoration durations (0 (CK), 3 (F1), 14 (F2), 26 (F3), and 46 (F4) years) in the alpine sandy land of northwest Sichuan. The results showed that, with the increase of ecological restoration durations, (1) the aboveground and underground biomass of plants, and species number significantly increased, while the shannon-wiener index, margalef index, and simpson index dramatically decreased; (2) in the early stage of ecological restoration (0-3 yr), Cyperaceae accounted for the main groups, while in the late stage of ecological restoration (14-46 yr), Leguminosae and Forb groups predominated; (3) ecological restoration durations significantly influenced the total phosphorus (TP) content at a soil depth of 0-60 cm, but soil organic carbon and C/P ratio were only significantly impacted at 40-60 cm; (4) the plant and soil characteristics of F1, F2, and F3 treatments were more similar, and CK and F4 treatments were clearly distinguished on PC1 of principal component analysis; (5) there was no significant correlation between Leguminosae groups and environmental factors. Instead, a correlation between total nitrogen (TN) and Forb groups, Gramineae groups, and Cyperaceae groups was revealed. TN was very significantly positively correlated with species diversity and TP. Long-term ecological restoration improved plants biomass, plant species diversity, functional plant groups, and increased soil TP content in the alpine sandy land of northwest Sichuan.

6.
Sci Total Environ ; 905: 166764, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37660805

RESUMO

Per- and polyfluoroalkyl substances (PFAS) is a class of persistent organic pollutants that presents health and environmental risks. PFAS are ubiquitously present in the environment, but current remediation technologies are ineffective in degrading them into innocuous chemicals, especially high energy degradation processes often generate toxic short chain intermediates. Therefore, the best remediation strategy is to first detect the source of pollution, followed by capturing and mineralising or recycling of the compounds. The main objective of this article is to summarise the unique physicochemical properties and to critically review the intermolecular and intramolecular physicochemical interactions of PFAS, and how these interactions can become obstacles; and at the same time, how they can be applied to the PFAS sensing, capturing, and recycling process. The physicochemical interactions of PFAS chemicals are being reviewed in this paper includes, (1) fluorophilic interactions, (2) hydrophobic interactions, (3) electrostatic interactions and cation bridging, (4) ionic exchange and (5) hydrogen bond. Moreover, all the different influential factors to these interactions have also been reported. Finally, properties of these interactions are compared against one another, and the recommendations for future designs of affinity materials for PFAS have been given.

7.
Neuropsychiatr Dis Treat ; 19: 1763-1770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37551320

RESUMO

Objective: Although electroconvulsive therapy (ECT) has been employed as an effective treatment strategy and to improve mental symptoms in schizophrenia (SCZ), its action mechanisms remain unclear. Our previous study found that some genes and biological pathways were closely related to ECT through genetic technology analysis, such as LTP pathway and EP300. This study combined with healthy controls and symptomatology analysis to further explore the changes of expression of EP300 protein in treatment and related symptoms of SCZ. Methods: One hundred and one patients with SCZ and 45 healthy controls (HCs) were enrolled in this study. Patients with SCZ received acute courses of 6 times bilateral ECT. The peripheral blood of patients with SCZ (BECT: before ECT; AECT: after ECT) and the HCs was collected to calculate the changes of expression level of EP300 protein by enzyme-linked immunosorbent assay. The Positive and Negative Symptoms Scale (PANSS) was used to evaluate the severity of symptoms of SCZ patients and the efficiency of the ECT. Results: There was a statistical difference of EP300 protein expression in patients with SCZ (BECT and AECT) (F = 114.5, p < 0.05). ECT reduced plasma expression level of EP300 protein in patients with SCZ, which was not statistically different from that in HCs (t = 4.47, p = 0.20). The change of the expression level of EP300 protein in patients with SCZ (BECT and AECT) has a positive correlation with reduction rate of positive symptoms (r = 0.228, p < 0.05) and disturbance of thought (r = 0.219, p < 0.05). Conclusion: Our study suggests that the expression level of EP300 protein has a significant change in patients with SCZ treating with ECT, and EP300 may have some connections with positive symptoms and disturbance thought of patients with SCZ.

8.
Nat Commun ; 14(1): 2870, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208321

RESUMO

Conversion into high-value-added organic nitrogen compounds through electrochemical C-N coupling reactions under ambient conditions is regarded as a sustainable development strategy to achieve carbon neutrality and high-value utilization of harmful substances. Herein, we report an electrochemical process for selective synthesis of high-valued formamide from carbon monoxide and nitrite with a Ru1Cu single-atom alloy under ambient conditions, which achieves a high formamide selectivity with Faradaic efficiency of 45.65 ± 0.76% at -0.5 V vs. RHE. In situ X-ray absorption spectroscopy, coupled with in situ Raman spectroscopy and density functional theory calculations results reveal that the adjacent Ru-Cu dual active sites can spontaneously couple *CO and *NH2 intermediates to realize a critical C-N coupling reaction, enabling high-performance electrosynthesis of formamide. This work offers insight into the high-value formamide electrocatalysis through coupling CO and NO2- under ambient conditions, paving the way for the synthesis of more-sustainable and high-value chemical products.

9.
Front Psychiatry ; 14: 1112657, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873212

RESUMO

Objective: To explore the relationship between the Duration of Untreated Psychosis (DUP) and long-term clinical outcome, cognitive and social function in patients with chronic schizophrenia (SCZ). Methods: A total of 248 subjects with chronic SCZ were enrolled in this study, including 156 in the short DUP group and 92 in the long DUP group. The Positive and Negative Symptoms Scale (PANSS), the Brief Negative Symptoms Scale (BNSS), the Global Assessment of Functioning (GAF) scale and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) were used to assess all of the subjects. Results: The negative symptom scores (the PANSS and BNSS) of subjects with long DUP were significantly higher than that in subjects with short DUP. The scores of visual span and speech function in the short DUP group were significantly higher, indicative of decreasing cognitive function with time. In terms of social function, the short DUP group scored higher, with a statistically significant difference. Meanwhile, we found that the length of DUP was positively correlated with the negative symptom score of the PANSS, negatively correlated with visual span scores, and GAF scores. Conclusion: This study demonstrated that the DUP remained a significant association with negative symptom and cognition in long period of chronic SCZ.

10.
Adv Mater ; 35(6): e2207850, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36411956

RESUMO

Single-atom catalysts have attracted extensive attention due to their unique atomic structures and extraordinary activities in catalyzing chemical reactions. However, the lack of general and efficient approaches for producing high-density single atoms on suitably tailored supporting matrixes hinders their industrial applications. Here, a rapid melt-quenching strategy with high throughput to synthesize single atoms with high metal-atom loadings of up to 9.7 wt% or 2.6 at% on nanoporous metal compounds is reported, representing several-fold improvements compared to benchmarks in the literature. Mechanism characterizations reveal that the high-temperature melting provides the essential liquid environment and activation energy to achieve the atomization of metals, while the following rapid-quenching pins the isolated metal atoms and stabilizes the coordination environment. In comparison with carbon-supported single-atom catalysts, various collaboration combinations of single atoms and nanoporous metal compounds can be synthesized using the strategy, thus achieving efficient hydrazine oxidation-assisted H2 production. This synthesis protocol is highly compatible with automatic operation, which provides a feasible and general route to design and manufacture specific single-atom catalysts with tunable atomic metal components and supporting matrixes, thus promoting the deployment of single-atom catalysts for various energy technology applications.

11.
IEEE Trans Neural Netw Learn Syst ; 34(3): 1418-1429, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34460391

RESUMO

Convolutional neural networks (CNNs) are widely used in the field of medical imaging diagnosis but have the disadvantages of slow training speed and low diagnostic accuracy due to the initialization of parameters before training. In this article, a CNN optimization method based on the beetle antennae search (BAS) optimization algorithm is proposed. The method optimizes the initial parameters of the CNN through the BAS optimization algorithm. Based on this optimization approach, a novel CNN model with a pretrained BAS optimization algorithm was developed and applied to the analysis and diagnosis of medical imaging data for intracranial hemorrhage. Experimental results on 330 test images show that the proposed method has a better diagnostic performance than the traditional CNN. The proposed method achieves a diagnostic accuracy of 93.9394% and 100% recall, and the diagnosis of 66 human head computerized tomography image data only takes 0.1596 s. Moreover, the proposed method has more advantages than the three other optimization algorithms.


Assuntos
Besouros , Redes Neurais de Computação , Animais , Humanos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Tomografia Computadorizada por Raios X/métodos
12.
Nanoscale Adv ; 4(24): 5355-5364, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36540112

RESUMO

Interactions between sialic acid (Sia) and sialic acid-binding immunoglobulin-like lectins (siglecs) regulate the immune system, with aberrations contributing to pathologies such as autoimmunity, infectious disease and cancer. Over the last decade, several multivalent Sia ligands have been synthesized to modulate the Sia-binding affinity of proteins/lectins. Here, we report a novel class of multivalent siglec probes through the decoration of α(2,6)-sialyllactose ligands on inherently fluorescent carbon dots (CD). We show that the preference of α(2,3)-linked Sia for siglec-1 can be altered by increasing the multivalence of Sia ligands present on the CD, and that a locally high glycan concentration can have a direct effect on linkage specificity. Additionally, micromolar (IC50 ∼ 70 µM) interaction of α(2,6)-sialyllactose-CD (6-CD) with siglec-2 (CD22) revealed it was capable of generating a significant cytotoxic effect on Burkitt's Lymphoma (BL) Daudi B cells. This phenonomen was attributed to 6-CD's ability to form trans interactions with CD22 on masked BL Daudi cells as a direct result of clustering of the Sia moiety on the CD surface. Overall, our glycoengineered carbon dots represent a novel high affinity molecular probe with multiple applications in sialoglycoscience and medicine.

13.
Artigo em Inglês | MEDLINE | ID: mdl-36136924

RESUMO

Eyelid malignant melanoma (MM) is a rare disease with high mortality. Accurate diagnosis of such disease is important but challenging. In clinical practice, the diagnosis of MM is currently performed manually by pathologists, which is subjective and biased. Since the heavy manual annotation workload, most pathological whole slide image (WSI) datasets are only partially labeled (without region annotations), which cannot be directly used in supervised deep learning. For these reasons, it is of great practical significance to design a laborsaving and high data utilization diagnosis method. In this paper, a self-supervised learning (SSL) based framework for automatically detecting eyelid MM is proposed. The framework consists of a self-supervised model for detecting MM areas at the patch-level and a second model for classifying lesion types at the slide level. A squeeze-excitation (SE) attention structure and a feature-projection (FP) structure are integrated to boost learning on details of pathological images and improve model performance. In addition, this framework also provides visual heatmaps with high quality and reliability to highlight the likely areas of the lesion to assist the evaluation and diagnosis of the eyelid MM. Extensive experimental results on different datasets show that our proposed method outperforms other state-of-the-art SSL and fully supervised methods at both patch and slide levels when only a subset of WSIs are annotated. It should be noted that our method is even comparable to supervised methods when all WSIs are fully annotated. To the best of our knowledge, our work is the first SSL method for automatic diagnosis of MM at the eyelid and has a great potential impact on reducing the workload of human annotations in clinical practice.

14.
Nano Lett ; 22(17): 7020-7027, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35973110

RESUMO

Reliable and controllable doping of 2D transition metal dichalcogenides is an efficient approach to tailor their physicochemical properties and expand their functional applications. However, precise control over dopant distribution and scalability of the process remains a challenge. Here, we report a general method to achieve scalable in situ doping of centimeter-sized bicontinuous nanoporous ReSe2 films with transition metal atoms via surface coalloy growth. The distinct strains induced by the bending curvature of nanoporous structures and uniform dopants result in a local 1T' to 1T″ structure phase transition over nanoporous ReSe2 films. The as-prepared nanoporous Ru-ReSe2 with high 1T″ phase exhibits preferable electrochemical activity in hydrogen evolution reaction. The work demonstrates a unique and general approach to synthesize uniformly-doped transition metal dichalcogenides with 3D bicontinuous nanoporous structure, which can be scaled up to batch production for various applications.

15.
Sci Total Environ ; 827: 153669, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217058

RESUMO

Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are highly recalcitrant anthropogenic chemicals that are ubiquitously present in the environment and are harmful to humans. Typical water and wastewater treatment processes (coagulation, flocculation, sedimentation, and filtration) are proven to be largely ineffective, while adsorption with granular activated carbon (GAC) has been the chief option to capture them from aqueous sources followed by incineration. However, this process is time-consuming, and produces additional solid waste and air pollution. Treatment methods for PFOS and PFOA generally follow two routes: (1) removal from source and reduce the risk; (2) degradation. Emerging technologies focusing on degradation are critically reviewed in this contribution. Various processes such as bioremediation, electrocoagulation, foam fractionation, sonolysis, photocatalysis, mechanochemical, electrochemical degradation, beams of electron and plasma have been developed and studied in the past decade to address PFAS crisis. The underlying mechanisms of these PFAS degradation methods have been categorized. Two main challenges have been identified, namely complexity in large scale operation and the release of toxic byproducts. Based on the literature survey, we have provided a strength-weakness-opportunity-threat (SWOT) analysis and quantitative rating on their efficiency, environmental impact and technology readiness.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Caprilatos , Fluorocarbonos/análise , Humanos , Água , Poluentes Químicos da Água/análise
16.
Small ; 18(4): e2104043, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846781

RESUMO

The electrocatalytic nitrogen reduction reaction (NRR) provides a promising strategy to convert the abundant but inert N2 into NH3 using renewable energy. Herein, single-atom Au isolated onto bicontinous nanoporous MoSe2 (np-MoSe2 ) is designed as an electrocatalyst for achieving highly efficient NRR catalysis, which exhibits a high Faradaic efficiency (FE) of 37.82% and an NH3 production rate of 30.83 µg h-1 mg-1 at -0.3 V versus a reversible hydrogen electrode (RHE) in 0.1 m Na2 SO4 under ambient conditions. Experimental and theoretical investigations reveal that the introduction of single Au atoms onto np-MoSe2 optimizes the adsorption of NRR intermediates while suppressing the competing HER, thus providing an energetic-favorable process for enhancing the catalytic selectivity toward electrochemical N2 reduction into NH3 .


Assuntos
Nanoporos , Nitrogênio , Catálise , Ouro
17.
Heliyon ; 8(12): e12629, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36619428

RESUMO

Land salinization is a global environmental problem, and how to manage saline soils and promote healthy ecosystems has become a major challenge. China-Singapore Tianjin Eco-City is located in coastal land reclamation areas, so salinization is severe in this region. In this study, geostatistical methods, the ordinary kriging method, and principal component analysis were used. Vertical sampling was performed over three layers (0-20 cm, 20-40 cm, and 40-60 cm) at 184 locations within the study area to produce a total of 542 soil samples. It was found that areas with soluble salt contents greater than 3000 mg/kg account for over 90% of the study area, and high soluble salt content in surface layer soils is the dominant factor in soil salinization. Na+, Cl-, and SO4 2- are the primary control factors that determine the coefficient of variation of the soils' soluble salt content. Total salinity and Na+, Cl-, SO4 2-, K+, and Mg2+ reflect on the salinization of the soils, while effective phosphorus, available potassium, and soil organic carbon reflect on the state of soil nutrition. Based on our results, we proposed site-specific and scientific soil remediation and greening measures.

18.
Funct Plant Biol ; 48(10): 973-983, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34112312

RESUMO

MiRNA-size small RNAs, abbreviated as sRNAs, are increasingly being discovered as research progresses and omics technologies development in prokaryotes. However, there is a paucity of data concerning whether or not sRNAs exist in cyanobacteria and regulate the resistance to oxidative stress. In this investigation, small RNA libraries were constructed from the control, 50-nM and 100-nM H2O2 treatments of Spirulina platensis. By high-throughput sequencing, 23 candidate sRNAs showed significantly differential expression under oxidative stress, among which eight sRNAs were identified with the similar expression patterns as the sequencing results by real-time qPCR. By nucleic acid hybridisation, the corresponding expression changes also demonstrated that sequencing results of sRNAs were feasible and credible. By bioinformatics prediction and structure identification, 43 target genes were predicted for 8 sRNAs in plant miRNA database, among which 29 were annotated into the genome and related metabolic pathways of S. platensis. By COG functional classification and KEGG pathway analysis, 31 target genes were predicted to be directly or indirectly involved in the defence mechanism of H2O2 stress. Thirteen target genes displayed reversely changing patterns compared with those of their sRNAs under H2O2 treatment. These findings provide compelling evidence that these sRNAs in S. platensis play a crucial role in oxidative stress responses, and thus provide a theoretical reference for improving the stress-triggering physiological regulation.


Assuntos
MicroRNAs , Spirulina , Antioxidantes , Sequenciamento de Nucleotídeos em Larga Escala , Peróxido de Hidrogênio
19.
Psychiatry Investig ; 18(5): 385-391, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33910328

RESUMO

OBJECTIVE: Schizophrenia (SCZ) is one of the most common and severe mental disorders. Modified electroconvulsive therapy (MECT) is the most effective therapy for all kinds of SCZ, and the underlying molecular mechanism remains unclear. This study is aim to detect the molecule mechanism by constructing the transcriptome dataset from SCZ patients treated with MECT and health controls (HCs). METHODS: Transcriptome sequencing was performed on blood samples of 8 SCZ (BECT: before MECT; AECT: after MECT) and 8 HCs, weighted gene co-expression network analysis (WGCNA) was used to cluster the different expression genes, enrichment and protein-protein interaction (PPI) enrichment analysis were used to detect the related pathways. RESULTS: Three gene modules (black, blue and turquoise) were significantly associated with MECT, enrichment analysis found that the long-term potentiation pathway was associated with MECT. PPI enrichment p-value of black, blue, turquoise module are 0.00127, <1×10-16 and 1.09×10-13, respectively. At the same time, EP300 is a key node in the PPI for genes in black module, which got from the transcriptome sequencing data. CONCLUSION: It is suggested that the long-term potentiation pathways were associated with biological mechanism of MECT.

20.
Sci Justice ; 61(2): 180-186, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33736851

RESUMO

The effect of the shape of semiconductor nanocrystals on their performance for visualising latent fingermarks was investigated for the first time. Highly luminescent CdSe/CdS core/shell nanocrystals in rod and spherical shapes were synthesised in organic solvent and transferred to aqueous solution using ligand exchange. The 3-mercaptopropionic acid coated nanorods and nanospheres were characterised using electron microscopy and UV-visible absorbance and luminescence spectrophotometry. A simple and rapid development of fresh to less than a week-old natural fingermarks from 4 donors (male and female) on non-porous surfaces including glass slides, aluminium foil and germanium disks using both CdSe/CdS core/shell nanorods and spherical dots was achieved, wherein nanorods demonstrated an enhanced development of ridge details in comparison to the spherical dots.


Assuntos
Compostos de Cádmio , Nanotubos , Pontos Quânticos , Compostos de Cádmio/química , Corantes , Feminino , Humanos , Luminescência , Masculino , Pontos Quânticos/química , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...